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Object detection – fundamental CV task

Dog score = 0.95

Dog score = 0.02
Classification: category and confidence score 

Location: accurate bounding box

• Object detection paradigms:

1. Region proposal: R-CNNs

2. Pixel anchor: YOLOs

3. Learnable query: DETRs

Ground Truth

Auto-Driving



Object detection -- NMS

From: Zhao et. al. DETRs Beat YOLOs on Real-time Object Detection. CVPR, 2024.

Highly-overlapped predictions NMS tuning

• Observations:

1. Both region-based and anchor-based existing methods require NMS for post-processing

2. NMS is unstable and introduces latency

NMS: Non-Maximum Suppression



DEtection with Transformer -- DETR

• Advantages:

1. The Transformer can extract global semantic context

2. One-to-one assignment eliminates the hand-crafted NMS, an end-to-end detector

Nicolas Carion et.al. End-to-end object detection with Transformer. ECCV, 2020.



Challenges in DETR

• Challenges

1. Slow convergence

2. High computation cost

3. Poor performance over small objects



Reasons behind slow convergence

• Hard optimization

1. Sparse supervision: less positive queries

2. Sparse queries: low-quality matching



Supervision – O2M vs. O2O

• Assignments

1. One-to-many (O2M): Multiple queries are assigned to each GT,  and NMS is necessary for 
duplicate queries.

2. One-to-one (O2O): Only assign the best query to the GT, which works end-to-end.

Toy examples -- O2M and O2O for an image with single GT (yellow – GT, red – pos. queries, and green -- neg. queries)

O2M: 1 target & 4 pos. O2O: 1 target & 1 pos.



Supervision – O2M vs. O2O

• Comparison between O2M (SimOTA) and O2O (Hungarian):

1. Less than 10 matched queries for most training images in O2O

2. O2M has several times of matched queries over O2O



Dense supervision – increasing matched queries

• Works on increasing matched queries

1. Group DETR (ICCV 2023): use multiple groups of queries and perform the O2O
assignment in each group separately.

2. Co-DETR (ICCV 2023): introduce conventional O2Ms as the auxiliary training, 
including Faster R-CNN, FCOS et. al. 

• Limitations

1. Cost: auxiliary decoders and additional training cost

2. Extra Losses: balance them with the main one carefully

3. Potential side-effect: increase high-quality duplicate queries



Dense supervision – Dense O2O

• Advantages:

1. Conceptually simple and general

2.  Come from free: neglectable cost in data transformation

Toy example – by stitching simply

Dense O2O by stitching: 4 targets & 4 pos.



Introducing priors on query initializations can alleviate this but it still exists in most cases, particularly
in images with more than one object.

• Works on query initializations

1. DETR (ECCV 2020): set to zero initially

2. Deformable DETR (ICLR 2021): two-stage refinement inspired by R-CNN detectors
3. DN-DETR (CVPR 2022) and DINO (ICLR 2023): initialize several auxiliary queries around GTs 
4. DINO (ICLR 2023) and RT-DETR (CVPR 2024): select top-k queries from the encoder

Sparse queries – query initialization



• Comparison between VFL and our MAL:

1. For low-quality matched queries, MAL will punish them harder with higher confidence

2. VFL takes those queries which have IoU = 0 as negative examples

3. MAL is a simpler equation than VFL and has no alpha

Note: p is the confidence probability, q is the IoU between query and GT, y is the class label; alpha@0.75 and gamma@1.5.

Optimization – VFL vs. MAL



Optimization – VFL vs. MAL

IoU = 0.05
Conf = 0.81

Toy example – low-quality matching

• Comparison between VFL and our MAL:

1. MAL punishes the low-quality matched queries a lot

Low-quality matching: IoU@0.05

IoU = 0.05



Optimization – VFL vs. MAL
Toy example – high-quality matching

• Comparison between VFL and MAL:

1. MAL and VFL perform similarly for high-quality matched queries

High-quality matching: IoU@0.95

IoU = 0.95



Main results -- overview 



Main results – real-time detectors

• Comparisons with real-time detectors:

1. Paired with D-FINE, DEIMs exceed all real-time detectors in the trade-off accuracy and latency



Main results – small-sized real-time detectors

• Comparisons with real-time detectors:

1. Paired with D-FINE, DEIMs exceed all real-time detectors in the trade-off accuracy and latency



Main results – ResNet-based DETRs 

• Comparisons with ResNet-based DETR:

1. DEIMs consistently outperform all DETRs, in particular RT-DETRv2 by ~1 AP

2. DEIMs achieve much better performance on small objects than any DETRs



Main results – CrowdHuman

• Comparisons on CrowdHuman:

1. CrowdHuman is a more challenging dataset that contains dense crowd scenarios

2. DEIM shows 1.5 AP improvement over D-FINE-L, especially APs and AP75

3. Demonstrate the strong generalization capability of DEIM



Ablation study – Dense O2O with Mosaic

• Observations:

1. The number of GT in ‘an’ image increases by times

2. More small objects by zoom-out



Ablation study – Dense O2O with MixUp

• Observations:

1. The number of GT in ‘an’ image also increases by times.



Ablation study – Dense O2O

• Methods for Dense O2O:

1. Both mosaic and mixUp can improve training convergence, and they are complementary

2. Mosaic improves the performance of small objects by a large margin

3. Dense O2O by Mosaic and Mixup increases # positive samples in training, enhancing supervision



Ablation study – Dense O2O & MAL

• Effectiveness of Dense O2O & MAL:

1. Dense O2O significantly accelerates model convergence

2. Our MAL further improves the model performance



Visualizations

• Observations:

1. D-FINE-L faces highly-overlapped predictions (top) and false positives (bottom).

2. By training with our DEIM, those problems can be mitigated.

In each paired image: D-FINE-L (left); DEIM-D-FINE-L (right). Confidence threshold@0.5.



Conclusion

1. DEIM is a simple and flexible training framework for real-time object detection.

2. DEIM accelerates the convergence by improving the quantity and quality of 
matching with Dense O2O and MAL.

3. With our DEIM, existing real-time DETRs achieve better performance while 
saving training costs.



Thanks! 

Attention: Our Intellindust AI Lab is seeking self-motivated and passionate researchers and interns to join our team and drive cutting-
edge advancements in artificial intelligence for industrial applications. Contact me with shihuahuang95@gmail.com

CodePaper
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